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Abstract

Expressions are derived for the rates of change of the § and P tensors for transformed homogeneous inclusions in an
anisotropic comparison medium undergoing prescribed changes of its elastic moduli. General results are obtained for
ellipsoids and then reduced to yield explicit expressions in terms of the Stroh eigenvalues for cylindrical and disk-shaped
inclusions in anisotropic solids and for spherical inclusions in isotropic solids. Applications are illustrated by solving the
rate problem for an inhomogeneity in a large volume of a comparison medium, which is shown to be readily adaptable
to standard averaging techniques for predictions of rates of change of overall moduli of composite materials experi-
encing evolution of phase moduli.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Micromechanical modeling of local fields and overall properties of heterogeneous solids is often based
on solutions of problems involving homogeneous inclusions of ellipsoidal shape residing in a large volume
of a comparison medium with a certain elastic stiffness C. As shown by Eshelby (1957) for isotropic solids,
and by Kinoshita and Mura (1971) for anisotropic solids, application of a uniform transformation strain p
within such inclusions generates there a uniform transformation strain field e = Su, where § is the Eshelby
tensor. The existence of a uniform field allows the connection § = PC, where P = (C* + C) " and C” is the
stiffness of the cavity containing the inclusion in C (Hill, 1965). Evaluation of S relies on integration of the
Green’s function, which is available in explicit form only for certain material symmetries (Mura, 1982; Ting
and Lee, 1997). Numerical procedures have been developed for evaluation of § in general anisotropic
solids, however, extensive calculations are required for acceptable accuracy of the results (Ghahremani,
1977; Gavazzi and Lagoudas, 1990).

Although elastic moduli of the constituents remain constant in most applications of composite mate-
rials, there are notable exception caused, for example, by changes in temperature or moisture content, by
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non-linear deformation, or by a phase transformation. Under such circumstances, the variable moduli of
the constituents r can be regarded as functions of an evolution parameter ¢ and represented by stiffness
tensors C,(¢) with known rates of change 8Cj,,(¢)/0t. Established procedures can be then used to define a
comparison medium C(¢) and its rate of change 0C(¢)/0t in terms of the constituent properties. Micro-
mechanical analysis of such problems has apparently not been formulated.

The present paper derives expressions for the rate forms 0P(¢)/0t and 0S(¢)/0t of the tensors, in terms
of known coefficients 0C(z)/0t. Section 2 reviews established procedures for evaluation of the P tensor
for ellipsoidal inclusions in an anisotropic media. Section 3 presents derivation of the 0P(¢)/0t tensors for
ellipsoidal inclusions in anisotropic and transversely isotropic solids. Section 4 focuses on derivation of
closed forms of OP(r)/0¢ tensors for cylindrical inclusions in anisotropic and orthotropic solids, for
spherical inclusions in isotropic solids and for disk-shaped inclusions in anisotropic solids. Finally, the
results are applied to the solution of the Eshelby problem in solids with evolving elastic moduli and local
eigenstrains. This solution is then extended to estimates of evolving overall moduli of composite materials.

2. Ellipsoidal inclusions in an anisotropic solid

Consider an infinitely extended homogeneous anisotropic material with an elastic stiffness tensor Cyy.
Suppose that in an ellipsoidal domain Q within the surface,

xXi/al + x5 /@ + x5 /ay < 1 (1)
there is a prescribed uniform distribution of eigenstrain y; or eigenstress
AZ = —Cjuty, (2)

The resulting stress ¢* and strain €* inside Q are uniform and defined in terms of the Eshelby tensor S, or
the Hill polarization tensor P,

* * * _ N *
€ = Sijkily € = Pl (3)

with connections,

* * LS * —1 _* *
0y = Cijuey + Ajj & = Cijklo-k/ + 1y (4)

The fields outside 2, denoted by ¢ and €, are no longer uniform, however, their values at points adjoining
the interface 6Q can be found (Hill, 1961, 1972, 1983) in the form suggested by Laws (1975, 1977) and
Walpole (1977),

€ij = € = Pijaty (5)

g N -1 -1 -1 6

Py () = g\ ey + yngno + Iyning + Ty gy (6)
where n is the unit normal vector to the interface 092, and I';; is the Christoffel matrix,

F,-k(n) = C[jk]nj}’l[ (7)

The jump in the interface strain components (5) can be utilized in evaluation of the strain field (3) inside Q.
In particular, Walpole (1977) has proved that fag xinpe;dS = 0 where the integral is over the interface 0%,
and ¢; is evaluated on the matrix side. Then after multiplying (5) by x,n,, integrating over the surface of the
ellipsoid, and using definition (3), one obtains,

fag Xp1p Pk AS 1
P = =

- P, dS 8
Joo Xpn1pdS dra,aras /mxpnp s (8)
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The surface integral fag x,h,dS was evaluated as three times the volume integral fQ dV by applying the
divergence theorem. The fQ dV is the volume of the ellipsoid, which is 4/3najasa;. To evaluate the re-
maining surface integral, we use a simple change of variables, that transforms the ellipsoid into a unit
sphere, i.e., x; = a1&;, x2 = ax&,, x3 = a3&;. Then by applying to the integral (8) the divergence theorem,
transforming the volume integral over the ellipsoid to the volume integral over the sphere, and applying the
divergence theorem again to revert to the surface integral, we have,

1 1 1
Py =— [ (2, V=— Pné,) . dV(E) = — £ EPy
jjkl 47'[611612613 /V< /klxp),xp d 47'[ V(¢>( jklgp)i‘:p d (é) 475 /S(f:) gpip jjkl dS(f)
1
4n /s<¢> o 4S(2) ®)

where V(&) is the volume of the unit sphere, S(&) is the surface of the sphere, and by construction &,¢, =1
on that surface. To evaluate 2;;,(n), components of the unit normal vector n are expressed in & coordinates,
2
Xi/a; fi a;
= 2/4l N 2./2 2 \1/2 (10)
(x/d} +x3/a5 + x3/a3) (&i/ai + & /a3 + &/ a3)

where there is no summation on index i. Next, we perform the following coordinate transformations,
o) = & /ay, @y = &/ay, @3 = & /a;, and then o, = @;/®, where @ = (@} + @3 + (Z)g)]/z. It is clear that
under those transformations, the unit sphere in é-space is transformed into the unit sphere in w-space. The
surface element dS(€) is transformed to a new surface element dS(w) = (aja2a3)”'@3dS(&) (Mura, 1982).
Also, in @ coordinates n; = w;. Then it follows that,

ajaxas

Pijkl = / 6)391']](1((1)) dS((,l)) (11)
S(w)

It can be easily proved that & = wa;/(alw? +a§w%+a§w§)l/ ? (no summation on i), and thus, @&; =

Wi/ (@0? + a2 + a2w?)'*. Hence, @ = 1/(a20? + @32 + a2w?)'”. Finally, the P tensor is written in the
form,
ayiaras 1
Py = 100 / P () dS (o) (12)
! A s) (@e? + o} + d2a?)

A somewhat different way of deriving the P tensor was adopted by Kinoshita and Mura (1971). They
first obtained the displacement field inside and outside the inclusion (1) subjected to the uniform eigenstress

(),
1

4

ui(x) = =220 f00(x) (13)

a)ards _
M i () Z/ T L (@) dS(o) (14)
Sox) (@07 + G303 + a303)

and S(w, x) is the subset of the unit sphere S(w) where condition
(x 0) <o} + ol + dlo! (15)

is satisfied. Condition (15) implies that the section area of the inclusion domain © cut by a plane per-
pendicular to @ and containing the point x is not zero. When the point x € Q, then S(w, x) becomes the unit
sphere, i.e., S(w, x) = S(w), and the integral in (14) becomes independent of x,
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aaas -1
Mgy = / I (@)owdS(e) xeo (16)
! S) (@o? + 3w} + a%w%)m &

The strain field inside Q is obtained from (13) as,

* 1 * * 1 *
=5 (i, +uj;) = —g(/%kiﬂ + M)y X € Q (17)
Comparing definitions (3) with (17), one finds,
1
Py = T6n (M yiji + Myjit + My + M i) Siikt = Prjmn Connta (18)

where the components P,;; have been made symmetric under k& < / due to symmetry of the 4}, tensor. The
definitions (12), (16), and (18) are identical. They also indicate that P is symmetric and positive definite.

3. Rate forms of the P tensor
3.1. Ellipsoidal inclusions in an anisotropic medium

If the elastic constants of the solid containing the inclusion are prescribed as functions of an evolution
parameter ¢, in the form 0C;y,(¢)/0¢, then the P and S tensors also become functions of an evolution pa-
rameter ¢. The objective here is to find rate forms or derivatives PW, S,«jk, of the P and S tensors in terms of
the components C;;(7) and their derivatives Cyx;(#). The derivative of the P tensor is obtained from (18) as,

) 1. . . )
P = T6n (M1 + Mg + M iy + M i) (19)

We may also find the derivative of P in terms of the derivative of the interfacial tensor 2. From (12), it
follows that,
. 1 aiaas -
Py = i /s(w) %gijkl(w) dS(w) (20)
where { = (g0} + @3} + ddw?) "’
To find 2,3, we first note that for any tensor I'(¢),
d .
—Ir'=-r'rr! 21
& (21)
since (d/d¢)(I'T") = 0. The derivative of .#,,;; tensor then follows from (16) as,

. a\axa :
Miiji = — /s( ) 15 : L Tl w0 dS(o) .

To obtain the form of (16) and (22) more suitable for numerical evaluations the following change of
variables is usually employed (Mura, 1982),

L=aio/{ L =awm/{ =aws/(

1/2
[ (@l + o} + o)

Then (16) is written as,

M yiji = /S(C) F’;jl (@)w;w; dS(C) .
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where dS({) = aya,a3dS(w) /(. Since F,;jl (w)w;,; is a homogeneous polynomial of degree 0 the factor {
can be dropped in w; = {;{/a; and (23) can be written as,

_ G Q’z G
= [t (22 2 ) as (9
I (w) = F;jl(w)w,-a), (25)
The surface element dS({) can be written as
dS(¢) = di;dy (26)
where
G=01-8)"cosy L=01-05)"siny =0 (27)
Then (24) takes the form,
2n
%kl][ _/ dé3/ 17/{1/1(é é é)dlﬂ (28)
ay dy as

We note that I" ,; Ir,r ; w;w; 1s also a homogeneous polynomial of order 0 and thus one can write the
derivative of the .#,;; tensor similarly to (28) as,

2n
ﬂk[]l — / d(3/ Tkljl(? % iz) lp (29)

Tiji(0) = T (@) (o) (0)oo, (30)

)

Let I signify the adjoint of T, and |I'| the determinant of T, i.e.,

It =1 (31)
Then (28) reads,
1 2n T—v (i
M iz = / dC3/ kj(fw) @;c0; dys o) =/ @0 =0/an w3 = (3/as (32)
-1 o |I(@)]
and similarly (29) reads,
. ! w Y@y (@) (@)
L — — ks st y ‘-1
e R o )

The forms (29) and (33) are suggested to be used for numerical evaluations of P whenever the analytical
expressions for the P tensor itself are unavailable or difficult to obtain. For a general anisotropic material
Gavazzi and Lagoudas (1990) developed a procedure based on Gaussian quadrature formula to evaluate
the double integral (32). The same procedure can be applied for evaluation of the integral (33).

As another alternative, Mura (1982) suggests to evaluate the integral with respect to the angle s by the
use of theorem of residues after the following change of variables is performed,

cosy = (z+z")/2 siny=(z—-z"/(2) dy=dz/(iz)

The residues will be in general dependent upon a value of (3. However, more explicit results may be ob-
tained for transversely isotropic materials with the axis of rotational symmetry aligned with the x;-axis.
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3.2. Spheroidal inclusion in a transversely isotropic medium

Let x; be the axis of elastic symmetry coincident with the axis of the inclusion (1). We use contracted
notation C,, for the components of the stiffness tensor Cjy, i.e., Ciyy = Cy, Cyj; = Cyj, and Cozoz = Cus,
Ci313 = Css, Cpp1p = Cge. In contracted notation C,,, the only non-zero components of the stiffness matrix
C,, are,

Ci=Co=k+m Cx=n Cy=Cy3=I1
Co=k—-m Cu=Css=p Cg=3%(Ciy—Cp)=
where k, m, n, [, and p are Hill’s elastic moduli.

It can be shown that for a spheroidal inclusion with a; = @, = 1 and 1/a} = ¢ in a transversely isotropic
medium, |I'| is a function of only {; and is independent of ,

|F(C3)| = (C44C§C + C66(1 - Ci))[CCi(l - Ci)(CnCzs —2C13Cu — Cf3) + 02£§C44C33 + C11C44(1 - (?)2]
(35)

(34)

Thus, (32) assumes the form,

Miiji = /1 |F(1C;)| dés /2” I'ij(@)o0;,dy (36)
We list the values of a few of the internal integrals of (36), denoted as .#, below,
I3 = Znéic(CMCic + Ces(1 — C?))(CMC?C +Cn (1 — C%))
I =Ion = ( ég)[(CuCM + 3Cs6Cua)(1 — C§)2 + 4C44C3302§§
+ (€}, — C11C33 + 2C13Cus — 3C3, — 3CsCa3)el5 (G — 1)] (37)

Analytical evaluation of the integrals over {; of type (36) for transversely isotropic medium has been
presented in the papers of Withers (1989) and Mikata (2001).
Analogously, one can write the integral (33) as,

. 1 1 Zn/\ . .
ﬂkiﬂ = 3 F]:Al o)l r C()C()]d 38
/1|F()IC/ (@)F (@) F; (@) dy (38)

The integral can be evaluated numerically by employing Gaussian integration rule.

4. Rate forms of P for special shapes of ellipsoidal inclusions
In this section we present the rate forms of the tensor P for long cylinders, spheres, and thin disks.
4.1. Cylindrical inclusion in an anisotropic medium

A cylindrical inclusion domain Q can be obtained from (1) by letting a; — oo so that Q becomes,
/@ +x/as <l —co<x3<00 p=a/a (39)
Kinoshita and Mura (1971) proved that for interior points x € Q and a3 — oo, the tensor .#;(x) in (14)

tends to the constant value,

aya
Mg =2 /( et s (01, 02,0)ds(0) - i (0) = I/ (@)oo (40)
ajwi 2

where s(w) is the unit circle s(w) = {o|w] + v} = 1}.
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The derivative of the .# tensor for a cylindrical inclusion is then obtained from (21) and (40) as,
/ a\ar
ﬂ ijl = —2 7T ii , ,O d
=2 [ Gt g Toon n 0050

Yiiji(wr, w2, 03) = F,;l (w)fs,(a))F l(a))wiw, (41)

i
To evaluate the integrals (40) and (41) we follow the procedure described by Ting and Lee (1997). Let n

and m be two fixed orthogonal unit vectors on the plane w; = 0; any unit vector o lying on that plane can
be represented by,

® = ncosy + msiny (42)

where 0 <y < 2x. Then,

Iy(o1, 02,0) = Cryr| g = Cisji(ftg cOS Y + g sin ) (7, cos Y + my, sin i) (43)
By introducing new tensors,

Oij = Ciyjulishy Ry; = Cyyjuishty Ti; = Ciyjelitshi, (44)
the tensor I'y;(w;, @, 0) can be written as,

I(Y) = Qcos* + (R + R") cos s siny + Tsin” f = cos® YyI'(z) (45)
where z = tan s and,

I(z)=Q+z(R+R") +2T (46)
Let us now denote

Ay(o) = o, (47)
and express the tensor A(w;, ,,0) in terms of a parameter , in a manner similar to (45),

A(Y) = Fcos®  + (G + G") cos y sinyy + H sin”> y = cos® A (z) (48)
where

Fo=nn; Gy =mnm  Hy = mnm (49)
and

A(z) =F+z(G+G") +?H (50)
Also,

2.2 2 2 2 2 252 | 222 25 - 2. - 252 | 22
ajo7 + ayw5 = cos”Y(a+2bz+cz”) a=ajn] + asi; b = (ajinm + ayiom,) ¢ = ajmy + asm;  (51)

Using the definitions (45), (48), and (51) the integral in (41) can be written as,

. /2 aja; » . »
=3 [ e e T O )40 d (52)

or, in terms of the variable z = tany as,
. o a\a _ ; _
Mo = 4 /—oo (a+2bz + cz?) ry (Z)Fst(z)l"tjl(z)/l,«,(z) dz (33)

since dyy = dz/(1 4 z2) = cos® i dz. Moreover, if |I'(z)| denotes the determinant of I'(z) and I'(z) the adjoint
of I'(z),
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L)L) = [TE) (54)
then (53) assumes the form,
iy =4 [~ ARLOLADLE) g, (53)
oo (a+2bz + c2?)|T(2)]

Suppose the unit vectors in (42) area={1 0 0}, m={0 1 0}'.Thena=al,b=0,and c = dl.
Then the denominator of (55) is equal to zero if z = +(a;/a,)i or if the determinant of I'(z) vanishes, i.e.,
[I'(z)] =0 (56)

Eq. (56) is of the sixth order in z. Let z, (v = 1,2, 3) denote the roots of (56) with a positive imaginary part.
Now, in view of (46), the determinant of I'(z) may be expressed by,

\T(2)| =T|f(2) (57)
where
f@)=(z-21)z-2)(z—2)(z-2)(z—-2)(z-2), (58)

the overbar signifies complex conjugate and |7| is the determinant of matrix 7. From the theorem of
residues we then obtain,

8711{ fks(pi)Fs,(pl)Ft, p1 Aapi) i;z FAS p+ )FU( )/; 1(2) (Z—ZV)Z]
o= /o (59)

ik 2if2(pi) Zz/P)fz(
It should be pointed out that (59) remains valid when z, are all different and z, # pi. For other cases, an
alternative expression may be obtained depending on the number and multiplicity of the poles of the in-
tegrand (55).
It is instructive here to obtain expressions for the components of the P tensor itself. From (40) we have,

kijl = —

a7 a1 (2) _
My =4 /, < (ar2be e O E (60)
and, again, by the use of the theorem of residues, we obtain,
8mi | I'i;(pi)Aq(pi) 2 sz‘ 112\)
My — s = 61
e ITl{ 2if (pi) +; 2/ | A (®1)

4.2. Cylindrical inclusion in an orthotropic material

For an orthotropic material, and the unit vectors in (42) equal toa={1 0 0}, m={0 1 0},
the matrix I'(z) becomes,

Cii+2°Ces  2(Cia + Ces) 0
I(z) = | 2(Cio + Ces)  Ces +2°Cn 0 (62)
0 0 C55 +ZZC44
and the matrix A(z) is,
z
z (63)

1
Alz) = (z
0 0

[S)
S OO
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Contracted notation C,,, (p,q =1,2,...,6) for the elastic constants C;, has been used in (62). One of the
roots z, of (56) is immediately found as z; = 1y/Css/Cy. Other two z, with a positive imaginary part are
chosen among four roots of (56) given by +/e** (Yang and Chou, 1976), where

Z1p = j:/leii“ Im(zl,z) >0
2= (Ci/Cn)'"* o =arccos(v/—C/2) for—4 < C<0

o = arccos(iv/C/2) for C >0 (64)
S )
C:Cnsz i, C12C66_2 _4<C<oo
C66V C11C22

The only non-zero components of the adjoint of I'(z) are found as,

Ty = (Cos +2°Cr)(Css + 22 Cay)

Ty= (Cy1 + 2*Ce6) (Css + 2* Cuy)

Tin=Ty= —2(Ciz + Ce)(Css + 2° Caa)

T's; = (C1 + 22Ce6)(Ces + 22Cn) — 22(Cra + Ce)’

(65)

The tensor P is now evaluated by using (62)—~(65) in (59) and (19); the tensor P itself is evaluated from
(61) and (18). Below we give expressions for the components of the P tensor, as it follows from (61), for an
elliptic cylinder in an orthotropic solid,

2i | (Ces — p*C2)(Css — p*Cua) > (Ces +22Cy)(Css + 22Caa)
P, =P = —
= Tl{ 217 (o) *Z (0 +2/p)(z)
2i(Ciy + Ces) | pP(Css — p*Cus) = 22(Css + 22Cay)
Py = Pijyy =
=P =T WG (ot e
Py = Pyryy — g —p*(Cyy — p*Ce5)(Css — p C44) Z 22(Cyy +Z‘,C66)(C55 +Z§C44)
7] 2if (pi) - (p+z3/p)t(z)
2i | (Ciy + p*Cx + 2p°C12)(Css — p*Cag) > (Cn +chzz - ZZ%CIZ)(CSS +Z%C44)
=4Ppi = + Z 3
17| | 2if (pi) — (p+2z3/p)tu(z0) (66)
P — APar — (Cii — p*Ces)(Ces — p*Cra) + p*(Ci2 + C66)
ss = 4P313 =
|T| 2if (pi)
(O +22Ce6)(Cos + 22Cn) — 22(Cra + C66)
+ :
v=1 (p +Z\/p) "( \’)
. 21 | —p?[(Ci1 — p*Ces)(Ces — p*Cn) + p*(Cia + C66)2]
Py = 4Py33 = — ——
7] 25710
3 02
22[(Cii +22Ce6)(Ces + 22Cr) — 22(Cra + C66) ] .
+ il z, #1,pi
Z (p+2z/p)t(z)
where
t(z) =f(z1) = (@1 —21)(z1 — 2)(21 = 22)(z1 — 23) (21 — 23) (67)

and all other #,(z,) are obtained from (67) by a cyclic permutation of the subscripts.
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It is possible to simplify further (66) and give an expression that is valid also for degenerate case of
transversely isotropic materials when all z, = i. To accomplish this we follow the procedure described in
detail by Ting and Lee (1997).

It can be shown that for an orthotropic material the determinant (57) is a cubic function in z*> and,

@)= (2 -2)(@ -2) - z) (68)

We also note that it is convenient to consider pi formally as a fourth root (with positive imaginary part) of
the polynomial f(z)(p* + z*)/p. Thus, summation in (66) over index v can be carried out from v =1 to 4.
Roots of the Eq. (68) permit to use the notation,

Z+zy =1g z1z0 = —h Zf—l—z%:—s z3=1f; zy=1ip (69)

where

g= \/CIICZZ - CL+ 2C66((C11C22)1/2 —Ch)

>0
C»Ces (70)
C
By =+/Css/Cas h= C_; s=g-2h p=aja

As it has been shown by Ting and Lee (1997), to simplify (66) one needs to collect the terms before z,
n=20,2,4 6 and then for each exponent n sum these terms from v =1 to 4. To represent the resulting
quantities we introduce the following parameters,

no = 2(hPy +hp + B1pg) + p*(g + B3) + Bi(g + p) +5(Bs + p) + hg

n=(g+ps+p)

ny = (hfs + hp + B3pg)

ns = 2phPs(p + g + B3) + p* (Bss + Big + hg) + B (ps + hg) + 1> (B + p)
and

(z1 +22)(z2 + z3) (23 + 21) (21 + 24) (22 + 24) (23 + 24) = —d)

dy = g(h+ Bsg+ B3) (P> + pg + h)(Bs + p) > 0 (72)
dy = 2122324 = hﬂ3p >0

It is important that d; and d, are strictly positive. Then, the components of the P tensor take the form,

n

Py = m (C55C66 d% + (CCss + CyaCes)na + C22C44n4>

Py = d]sz’m (=Css(Cra 4 Ceg )2 — Caa(Ciz + Ce)na)

Py = ﬁ (C11Cssny + (CssCes + C11Cas)ng + CasCeonic)

1C20nCa4Ces
(73)

n

Pss = dlsz’m (CnCss d—j + (C11Caq — 2C12Css)ny + (CCss — 2C1pCag )y + C22C44’16)
n

Pss = dlczzpm (Cllcééd_z+ (C11Cxn + Céﬁ —(Cn+ Csé)z)nz + C22C66n4)

Py L (C11Cosmz + (C11Cap + Cog — (Cia + Ces)* ) + CayCese)

" dC»CiCes



A.P. Suvorov, G.J. Dvorak | International Journal of Solids and Structures 39 (2002) 5659-5678 5669

Expressions (73) are valid for an elliptic cylinder in any orthotropic material including the degenerate case
of transversely isotropic material when g = 2, A = 1, §; = 1. It is worth noting that in order to use (73) one
needs to know only the sum and the product of the roots z;, z; but not their individual values. It is also seen
that the P; are real (not complex) numbers.

Consider now the case of a slit crack that occupies the region,

— g <x1<a; x=0 —oco<mn<o (74)

The P tensor may be obtained from (73) by letting p = a;/a; — oo. In this case pny/(did>) — 0,
pna/dy — 0, pny/dy — 0, and png/d; — 1. Thus, we obtain,
Py = ! Py = ! P = !
2TC MG Y Gy
and other P; are equal to zero.
Due to cumbersome nature of (73) the derivative of the P tensor with respect to parameter ¢ is at best
evaluated numerically as,

(75)

By = (Py(t + At) — Py(1)) /A (76)

where At is the sufficiently small increment of z. In Appendix A we illustrate how one can evaluate P,J based
on the general formula (59) for the general case of anisotropic media.

4.3. Cylindrical inclusion in a transversely isotropic material

We now apply results obtained in Section 4.1 to transversely isotropic materials. Let x; be the axis of
elastic symmetry coincident with the axis of the cylindrical inclusion. By using relations (34), it may be
easily shown that for a transversely isotropic material the z,, v = 1,2,3 are all equal to i. Thus,

II(z)| = |T|(z = i)’ (z +1)° = CCuCos(z — 1)’ (z +1)° (77)

For a long circular cylinder in a transversely isotropic material analytical expressions for the P tensor
has been derived by Walpole (1969). Therefore, it is much simpler to differentiate them with respect to
parameter ¢ directly rather than employ (55). (Formula (61) cannot be used since z, = 1.) Instead, we derive
here coefficients of the P tensor for a cylinder of ellipsoidal cross-section, and outline in Appendix A an
analogous derivation for more general anisotropic solids. As an example, we evaluate .#1;;; from (55).

With the use of (77) we have,

. o r (2 (z Tz
ﬂ1111:—4/ 1() zt() tlg) .6/111(2)(12 (78)
—o (p+22/p)ITI"(z = 1) (2 +1)
By expanding (78) in accordance with (62)—(65), we obtain,
M = _4/0@ Lh@TuEIE) + Te@ T eE@ @) + 20 @) T E) )
- (p+22/p) Tz =)' +1)°
4 /oo (Cos +22C0)*(Ci1 + 22 Ce) + 22(Ciz + Ces) (Cos + 22Cn)
-0 (p+2/p)ChC(z =) (2 +1)°
B 222(Cgs + 22 C2)(Cra + Cos) (Cra + Coo) dz
(0 +2/0)CoC(z = 1)z +1)"

since for a transversely isotropic material Css 4 z2Cyy = Cy4(1 +2%). Evidently, z =1 is the pole of the
integrand in (79) of multiplicity 4, and z = pi is the pole of the multiplicity 1.

dz

(79)
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The theorem of residues furnishes the value of .#,,;; as,

. 4mi d’ . . .
M = BN R (z— 1)4}|z:i —8ni{...(z - pl)}|2:pi (80)

where . .. represents the fractional expression under the sign of the integral in (79). After lengthy algebraic
manipulations, (79) reduces to,

i C2Cnl(p +2) + C3Coop

My =2 (81)
C5,Cs(1 + p)’
Then, from (19) and with the use of contracted notation P, for components P,;; we have,
. . 1 C2Cn(p+2)+ CLC
P =Py = -3 66 zzgp - ) 222 660 0 =a1/az (82)
C5,Co(1 + p)
Other non-zero components P, can be found in a similar manner,
¥ (C2Cor(1 4 2p) + C3,Cos)
Py =Pop=—7 - 5
2 C5,Ce(1 +p)
. . C2Cyp — CLC
Py =Pipn= Sy ( 6; 2; = 36)
2 GLCH(1+p) (83)
: : 2CCnp + C5,Ces(1 + p°)
Pgs = 4Ppopy = — o 5
C5,Ce(1 + p)
; ; PC44 ; ; Cu
Py =4Ppy = ————" P = 4Py = —————
44 2323 21+ p) 55 1313 21+ p)
For completeness, we give expressions for the non-zero components of P tensor,
1 p(Cyy + Cgs) + 2C,
Py =Py =~ p(Cxn 66) : 66 p=ai/a
2 C22C66(1 + ,0)
Py po, P (Cx + Ces(1 +2p))
0 =Pon =75 3
2 C22C66(1 +p)
Ces — C
Pis 21:’112222466 = 5
2 CCe6(1 + p) (84)
B (14 p?) 4+ 2pCe
Pss = 4P = 5
CCes(1 + p)
1L p
Py =4Py3; = — ———
44 2323 Ca 141
1 1
Pss = 4P, =— —
55 B = T P

4.4. Spherical inclusion in an isotropic medium

Consider now the case of spherical inclusions, i.e., a; = a» = a3 in (1). The tensor .#;; for points x inside
the spherical inclusion follows from (16),
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Mgy = / I (@)oo, dS(o) (85)
S(w)

The elastic constants C;;; for an isotropic material are,

Cijrt = 2010 + u(0udj1 + 00 ) (86)
where A and u are the Lame constants. For the points on the unit sphere S2, the tensor I'(w, w,, ®3),
defined by (7), becomes,

(Hpoi+p (A+poio  (A+poios
= A+pow, (A+pwo+p A+ woow; (87)
(A+pows  (A+poo; A+ pos + p

Its inverse, again for the points on the unit sphere S?, may be expressed in the form,

—wly+1/u — Wy — w3y
r'= —mwyy  —oyy+ 1/ —wwsy (88)
—W3Y — W3y —o3y+1/n
where
)= A+
(4 +2p)

Since the expression (88) of the inverse of I' for isotropic materials is quite simple, the derivative of the P
tensor with respect to the parameter ¢ can be determined more easily by direct differentiation of the inte-
grand in (85) rather than by employing (21). With the use of spherical coordinates, we have from (85),

. n /2
Mz = 2/ sinH/ if;-l(wu 2, w3)w;m;dy do (89)
0 —apdt Y

where w; = sin 0 cosy, @, = sin0siny, w; = cos . The components of the P tensor for a spherical in-
clusion in an isotropic medium are now found from (19) and (89) as,

P(3A+ 144 + 20(4 + 4ud)

P]l - P
1502(A+2u)
_ R A) + (2 + 4pd)
1502(% + 2u)° (90)
b MU 8 + 64 + 4l
* 1512(7+ 2p)°

Py =Py =Py, Pu=Ps=Pgs, Py=P;=Py;
The components of P tensor are,
o Tu+24
T 15u(7 4 2p)
_ . Atu
T —15u(2 + 2p) 1)
_2(34+8u)
T 15u(2 4 2p)
Py = Py = Py, Py = P55 = Py, P, = Pj3 = P

11

P

44
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4.5. Disk in an orthotropic medium

For a thin disk,
xi/d + /@ <1 x =0 52)

This may be regarded as a limiting case of the ellipsoid (1), by letting a3 — 0.
It has been shown by Kinoshita and Mura (1971) that as a; — 0 the tensor (16) tends to,

%kijl = 4TEF71(83)531‘53[ (93)

kj

where e; = (00 l)T and I'y; is defined in (7). Expression (93) remains valid for arbitrary degree of an-
isotropy of C and for arbitrary a;/a,.

Consider a thin disk (92) in an orthotropic medium with x; being one of the axes of elastic symmetry.
One can find easily that I’ ,:jl (e3), required in (93), is given by,

1/C1313 0 0

F71 (63) = O 1/C2323 O (94)

0 0 1/Cs333

By differentiating (93) we have,
. d .

'%kijl = 47[@1_';}1 (83)53,-03[ (95)
Now, with the use of contracted notation, the only non-zero components of the P tensor are found as,

. C33 ; C44 P CSS
Py=——F Pyu=—— Ps=——- (96)

& C Css

The non-zero components of the P tensor are,

1 1 1
Py=— Py=— Pys5=— 97
33 C33 44 C44 55 C55 ( )

5. Applications
5.1. The inhomogeneity problem

Consider now an inhomogeneity of stiffness C,, located in the ellipsoidal domain €, defined in Eq. (1),
that is contained in a large volume ¥} of a comparison medium of stiffness C. This volume is subjected to a
certain uniform image strain €', applied at the remote boundaries of ¥, (problem (b)). Consider also a
related problem (a), for a transformed homogeneous inclusion in the domain Q, loaded by a uniform ei-
genstrain u?, and embedded in the volume ¥ of stiffness C. As in problem (b), a uniform image strain €' is
applied at the boundary ;.

Comparing the local strains and stresses in £ we have,

€ =Su' +e =€ =o€ (98)
¢t =C(e —p*) = af’ = C,of, € (99)

where .o, is yet unknown partial mechanical strain concentration factor. The first relation yields the
equivalent eigenstrain as,
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w=8"(oA —I)é (100)
which, when substituted into the Eq. (99), provides the strain concentration factor value as,

o' =(I—-P(C-C,))=PP" (101)

where P=SC'= (C*+C) 'and P, = (P! = C+ C,)"' = (C* 4+ C,)"" and C" is the constraint tensor
that represents the stiffness of a uniformly deformed ellipsoidal cavity containing an inhomogeneity C.,.
Substituting (101) into (100) we have,

p=C'P'(P,— P)P '€ (102)

r

Rate forms of (98) and (99) are,

=8+ Sii* +& =& =t e + o4, & (103)

& =C(e& — i)+ C& — i) =6 = (Coot, + C,d,)é + Coot & (104)

Since the eigenstrain (100) and the concentration factor (101) satisfy the Egs. (98) and (99), their derivatives
ji¢ and o/, can be shown to satisfy the rate form of these equations, i.e., (103) and (104).

In summary, the rates of the strain and stress fields in the inhomogeneity C, residing in comparison
medium C that is loaded remotely by €' are,

& = oA, € + of,é (105)

6, = (Cood, + C,.ok,)€" + C,.of & (106)
The derivative of the .7, is found from (101) as,

oA, = oA,[P(C—C,)+P(C—C,)|A, (107)

5.2. Estimates of overall stresses and stress rates

The overall stiffness of a composite aggregate consisting of phases » = 1,2, ..., n can be found using the
standard form (Hill, 1965; Walpole, 1966) L =>""_, ¢,C,A,, where A, is the total concentration factor
A, =2,3", ﬂs)_l, and ¢, is the volume fraction of the phase r. The overall stress and stress rate sup-
ported by a composite with evolving moduli, under applied strain €’ and strain rate €° are,

n

o= E ¢,C, A€
r=1

\ (108)
6=> c(CA, +C.A,)e +¢,C.A,&

r=1

The stiffness C of the comparison medium is chosen according to the selected averaging method. For
example, C = C, provides the Mori-Tanaka estimate for a composite with matrix C;. The choice C = L
implies the self-consistent estimate which would be rather difficult to implement in the present context.
Other admissible choices of C in terms of known phase properties can be found in Dvorak and Srinivas
(1999).
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6. Conclusions

The results present derivations of solutions of transformed homogeneous inclusion problems in aniso-
tropic solids that have variable elastic moduli C(¢), dependent on an evolution parameter ¢, and changing at
a prescribed rate 0C(¢)/0t. The results are found in terms of rates dP(¢)/0t of the P tensors for several
useful shapes of ellipsoidal inclusions in anisotropic solids with symmetries of typical composite material
systems, and are derived in explicit or closed form. The well-known connections with the Eshelby tensor
S(t) = P(¢)C(¢) then provides the rate forms 05(¢) /0t = (0P(¢)/0t)C(¢) + P(¢)(0C(t)/0t), which are utilized
in solving inhomogeneity problems in heterogeneous solids with varying constituent stiffness coefficients.
Extension of these results to evaluation of overall moduli rates by standard averaging methods is also
outlined.
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Appendix A

Here we elucidate how one can evaluate the tensors (59) and (61) for a cylinder in an arbitrary aniso-
tropic medium. In this case components of the matrix I'(z) with the choice of the unit vectors
a={1 0 0} ,m={0 1 0} are given by,

I'yy = Cy +22Ci6+2°Ces T'ia = Cig +2(Ciz + Cep) + 22 Ca
I3 =Cis+2(Ciy + Csg) +72Cas 'y = Cs + 22Ca5 + 2°Cy (A1)
Iy3 = Css +2(Cys + Cas) +22Cay  T'33 = Css +22Cys5 + 2*Cyy

The derivative of the matrix I' with respect to parameter ¢ (and the matrix itself) is a polynomial in z of the
second degree and thus can be represented as,

Iz)=> T (A.2)

=0

where I'' are the real symmetric matrices dependent only on the derivatives C; s« but not on z. Similarly, the
adjoint matrix I'(z) can be represented as a polynomial in z of degree four,

4
Iz => 21" (A.3)
n=0
where I are the real symmetric matrices independent of z. We list some of the components of the matrices
I'" below,
T, = CssCss — C% T, = —C16Css + C15Cs6

f% = C16Cs6 — C15Ces f(Z)Z = C1Css5 — C%S (A4)
9 = CisCis — CnCss T = C1iCo — Cig
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fil = 2C66Css + 2C5Css — 2Cs6(Cys + Cos)

~ (A.5)
Fiz = —Cs5(Ce6 + Ci12) + Cs6(Cse + Cia) + C15(Ca + Cas) — 2C16Cys

fﬁ = C6Cas + 4Ca6Cys + CCss — 2Cs6Cag — Cig — 2C46Cas — Cos (A6)
f%z = Cs56(2C46 + Ca5) + C1a(Cag + Cas) — 2Cs5(C1z + Co6) — C26Css + Ci5Carq — C16Cua

ffl = 2C56Cus + 2C»Cys — 2C4Co4 — 2C55Coy (A7)

f?z = Cy6(Cas + Ca5) — 2C3Cys5 — Cya(Co6 + C12) + C56Coq + C14Cos

T—“ltl = C22C44 — C§4 f‘I‘Z = C46C24 - C26C44
f?z = Cy6Cr4 — CysCn2 fgz = CesCas — Cié (A8)
f;g = C26C46 — C66C24 f§3 = C66C22 - C§6

Using definitions (A.2) and (A.3) in (59) we arrive at the following formula, suitable for numerical
determination of .,

3

. .3 3 2 4 4 D _ 2
iy =255 S S S S (g (043 it

v=1

) , 2
_ FZXF;;FLZ?, (2%‘[3(2‘,) +2 <p + %) tv(zv)t(,(z‘,)>} /

+{T3 Tl (i)’ /211 (0]}
O‘vﬁzlaza kvj:172737 5:n+m+l+a+ﬁ_2v p:al/ala Zv#ivpiv
My =0 if a=30r f=3 (A.9)

where

f@)=@C—-21)z—-21)(z—2)(z—22)(z—z3)(z — Z3)
(A.10)

, 1 1 1 1 1
1(z) = u(2) —+ = +—
zZ—n zZ— 2z zZ—2 Z—Z3 Z—Zz3

and all other ¢, are obtained from (A.10) by a cyclic permutation of the subscripts, and the determinant of
the matrix T is given by,

|T| = CpCusCos — CosCay — CaCas + 2C26Ca6Cas — CoCoa (A.11)

The Stroh eigenvalues z, are found numerically by solving (56). The tensor P is found from (19). Note that
the expressions (A.9) become singular when the elastic symmetry of the medium tends to transversely
isotropic. Loss of accuracy may occur because of the division by very small quantities such as #,(z,) for any
p and f(pi) for p = 1. In this case the expressions (82) and (83) must be used.
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For completeness, we give expressions for the components of the .# tensor, as it follows from (61),

3

M= Z { Sz [ [(0+2 Jute]| |+ T 00 i i)

v=1
o,f=1,2, k,j=12,3 (A.12)
d=n+oa+p—-2, p=a/ar, z, #ipi
Miyp =0 fa=3or f=3
The P tensor is found from (18).

Appendix B

Components of the Eshelby tensor S, defined by (3), and their derivatives for certain inclusion shapes are
listed below. Derivatives of the Eshelby tensor are found from the connection S = PC, i.e.,

Sijkl - Ejmn Cmnkl + IJijmn Cmnk/ (B 1 )

Elliptic cylinders (39) in a transversely isotropic medium (x3 is the axis of rotational symmetry):

_ Cxn(1+2p) — pCes _p(Cu2+4+p) —Cs)
St = > 222 = 2 p=a/a
Cu(l+p) Cn(l+p)

Sy — C — Ces(2+ p) ~ p(pCa — Ces(1 + 2p))

m=————s— Son= 5

Cu(l+p) Cn(l+p)

S = Ci3 _ pCis

3= S =

S3333 =0 S3311=0 S33n=0

1 Cou(1 4+ p*) + 2Ceep
S ==

2 Cx(1 +P)2

L S Y
21+p) 7 2(1+p)

Siz13 =

P(C«,sz - C66C22)
(1 + P)2

2+ p)(CesCrr — CssC) el + 2p)(CesCrr — CeCn)
Stin = S =

Sllll = S2222 =

S = CnCi3 — C;3Cx §rss — p(CnCi3 — C13Cx)
3= 3»=
Ch(1+p) Ch(1+p)

P(C%sz - C66C22)
a5 (1 + P)z

S1212 =
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Spherical inclusions in an isotropic medium with Lame constants A and u:

4u+9,. . 4 ph— g
Sh 252222253333=m 111 Zﬁm
3.-2u . 8 wh—
Stz = Stz = Sy = o Gy = LT
1122 1133 = S33 15005 20) 12 =75 Gt 20) (B.4)
S22 = 82211 = S3311 = S22
3.4+8u 2 Jp—
Si212 = S2323 = Si313 = m 1212 =73 m

Disks (92) in an orthotropic medium:

St = S22 = Si133 = S»33 = Siim = St = S =0

Cs . Cy3Cp3 — C3C
Sun =—o Sy =8

C33 C33 (B 5)
S33 = & Sy = Ol — CnC

Cs3 s

_ _ S T N N
S =1 S35 =833 =35 S3333 =833 =0
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