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Abstract

Expressions are derived for the rates of change of the S and P tensors for transformed homogeneous inclusions in an

anisotropic comparison medium undergoing prescribed changes of its elastic moduli. General results are obtained for

ellipsoids and then reduced to yield explicit expressions in terms of the Stroh eigenvalues for cylindrical and disk-shaped

inclusions in anisotropic solids and for spherical inclusions in isotropic solids. Applications are illustrated by solving the

rate problem for an inhomogeneity in a large volume of a comparison medium, which is shown to be readily adaptable

to standard averaging techniques for predictions of rates of change of overall moduli of composite materials experi-

encing evolution of phase moduli.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Micromechanical modeling of local fields and overall properties of heterogeneous solids is often based

on solutions of problems involving homogeneous inclusions of ellipsoidal shape residing in a large volume

of a comparison medium with a certain elastic stiffness C . As shown by Eshelby (1957) for isotropic solids,
and by Kinoshita and Mura (1971) for anisotropic solids, application of a uniform transformation strain l

within such inclusions generates there a uniform transformation strain field � ¼ Sl, where S is the Eshelby

tensor. The existence of a uniform field allows the connection S ¼ PC , where P ¼ ðC� þ CÞ�1
and C� is the

stiffness of the cavity containing the inclusion in C (Hill, 1965). Evaluation of S relies on integration of the

Green�s function, which is available in explicit form only for certain material symmetries (Mura, 1982; Ting

and Lee, 1997). Numerical procedures have been developed for evaluation of S in general anisotropic

solids, however, extensive calculations are required for acceptable accuracy of the results (Ghahremani,

1977; Gavazzi and Lagoudas, 1990).
Although elastic moduli of the constituents remain constant in most applications of composite mate-

rials, there are notable exception caused, for example, by changes in temperature or moisture content, by
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non-linear deformation, or by a phase transformation. Under such circumstances, the variable moduli of

the constituents r can be regarded as functions of an evolution parameter t and represented by stiffness

tensors C rðtÞ with known rates of change oCr
ijklðtÞ=ot. Established procedures can be then used to define a

comparison medium CðtÞ and its rate of change oCðtÞ=ot in terms of the constituent properties. Micro-
mechanical analysis of such problems has apparently not been formulated.

The present paper derives expressions for the rate forms oPðtÞ=ot and oSðtÞ=ot of the tensors, in terms

of known coefficients oCðtÞ=ot. Section 2 reviews established procedures for evaluation of the P tensor

for ellipsoidal inclusions in an anisotropic media. Section 3 presents derivation of the oPðtÞ=ot tensors for
ellipsoidal inclusions in anisotropic and transversely isotropic solids. Section 4 focuses on derivation of

closed forms of oPðtÞ=ot tensors for cylindrical inclusions in anisotropic and orthotropic solids, for

spherical inclusions in isotropic solids and for disk-shaped inclusions in anisotropic solids. Finally, the

results are applied to the solution of the Eshelby problem in solids with evolving elastic moduli and local
eigenstrains. This solution is then extended to estimates of evolving overall moduli of composite materials.

2. Ellipsoidal inclusions in an anisotropic solid

Consider an infinitely extended homogeneous anisotropic material with an elastic stiffness tensor Cijkl.

Suppose that in an ellipsoidal domain X within the surface,

x21=a
2
1 þ x22=a

2
2 þ x23=a

2
3 6 1 ð1Þ

there is a prescribed uniform distribution of eigenstrain l�
ij or eigenstress

k�
ij ¼ �Cijkll

�
kl ð2Þ

The resulting stress r� and strain �� inside X are uniform and defined in terms of the Eshelby tensor S, or
the Hill polarization tensor P,

��ij ¼ Sijkll�
kl ��ij ¼ �Pijklk

�
kl ð3Þ

with connections,

r�
ij ¼ Cijkl�

�
kl þ k�

ij ��ij ¼ C�1
ijklr

�
kl þ l�

ij ð4Þ

The fields outside X, denoted by r and �, are no longer uniform, however, their values at points adjoining

the interface dX can be found (Hill, 1961, 1972, 1983) in the form suggested by Laws (1975, 1977) and

Walpole (1977),

�ij � ��ij ¼ Pijklk
�
kl ð5Þ

PijklðnÞ ¼
1

4
C�1

jk ninl

�
þ C�1

ik njnl þ C�1
jl nink þ C�1

il njnk

�
ð6Þ

where n is the unit normal vector to the interface oX, and Cik is the Christoffel matrix,

CikðnÞ ¼ Cijklnjnl ð7Þ
The jump in the interface strain components (5) can be utilized in evaluation of the strain field (3) inside X.

In particular, Walpole (1977) has proved that
R
oX xknk�ij dS ¼ 0 where the integral is over the interface oX,

and �ij is evaluated on the matrix side. Then after multiplying (5) by xpnp, integrating over the surface of the

ellipsoid, and using definition (3), one obtains,

Pijkl ¼
R
oX xpnpPijkl dSR

oX xpnp dS
¼ 1

4pa1a2a3

Z
oX

xpnpPijkl dS ð8Þ
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The surface integral
R
oX xpnp dS was evaluated as three times the volume integral

R
X dV by applying the

divergence theorem. The
R

X dV is the volume of the ellipsoid, which is 4=3pa1a2a3. To evaluate the re-

maining surface integral, we use a simple change of variables, that transforms the ellipsoid into a unit

sphere, i.e., x1 ¼ a1n1, x2 ¼ a2n2, x3 ¼ a3n3. Then by applying to the integral (8) the divergence theorem,
transforming the volume integral over the ellipsoid to the volume integral over the sphere, and applying the

divergence theorem again to revert to the surface integral, we have,

Pijkl ¼
1

4pa1a2a3

Z
V
ðPijklxpÞ;xp dV ¼ 1

4p

Z
V ðnÞ

ðPijklnpÞ;np dV ðnÞ ¼
1

4p

Z
SðnÞ

npnpPijkl dSðnÞ

¼ 1

4p

Z
SðnÞ

Pijkl dSðnÞ ð9Þ

where V ðnÞ is the volume of the unit sphere, SðnÞ is the surface of the sphere, and by construction npnp ¼ 1

on that surface. To evaluatePijklðnÞ, components of the unit normal vector n are expressed in n coordinates,

ni ¼
xi=a2i

ðx21=a41 þ x22=a
4
2 þ x23=a

4
3Þ

1=2
¼ ni=ai

ðn2
1=a

2
1 þ n2

2=a
2
2 þ n2

3=a
2
3Þ

1=2
ð10Þ

where there is no summation on index i. Next, we perform the following coordinate transformations,
~xx1 ¼ n1=a1, ~xx2 ¼ n2=a2, ~xx3 ¼ n3=a3, and then xi ¼ ~xxi= ~xx, where ~xx ¼ ð ~xx2

1 þ ~xx2
2 þ ~xx2

3Þ
1=2

. It is clear that

under those transformations, the unit sphere in n-space is transformed into the unit sphere in x-space. The

surface element dSðnÞ is transformed to a new surface element dSðxÞ ¼ ða1a2a3Þ�1 ~xx�3dSðnÞ (Mura, 1982).

Also, in x coordinates ni ¼ xi. Then it follows that,

Pijkl ¼
a1a2a3
4p

Z
SðxÞ

~xx3PijklðxÞdSðxÞ ð11Þ

It can be easily proved that ni ¼ xiai=ða21x2
1 þ a22x

2
2 þ a23x

2
3Þ

1=2
(no summation on i), and thus, ~xxi ¼

xi=ða21x2
1 þ a22x

2
2 þ a23x

2
3Þ

1=2
. Hence, ~xx ¼ 1=ða21x2

1 þ a22x
2
2 þ a23x

2
3Þ

1=2
. Finally, the P tensor is written in the

form,

Pijkl ¼
a1a2a3
4p

Z
SðxÞ

1

ða21x2
1 þ a22x

2
2 þ a23x

2
3Þ

3=2
PijklðxÞdSðxÞ ð12Þ

A somewhat different way of deriving the P tensor was adopted by Kinoshita and Mura (1971). They

first obtained the displacement field inside and outside the inclusion (1) subjected to the uniform eigenstress

(2),

ujðxÞ ¼ � k�
klxi
4p

MkijlðxÞ ð13Þ

where

MkijlðxÞ ¼
Z
Sðx;xÞ

a1a2a3
ða21x2

1 þ a22x
2
2 þ a23x

2
3Þ

3=2
C�1

kj ðxÞxixl dSðxÞ ð14Þ

and Sðx; xÞ is the subset of the unit sphere SðxÞ where condition

ðx � xÞ2 6 a21x
2
1 þ a22x

2
2 þ a23x

2
3 ð15Þ

is satisfied. Condition (15) implies that the section area of the inclusion domain X cut by a plane per-

pendicular to x and containing the point x is not zero. When the point x 2 X, then Sðx; xÞ becomes the unit
sphere, i.e., Sðx; xÞ ¼ SðxÞ, and the integral in (14) becomes independent of x,
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Mkijl ¼
Z
SðxÞ

a1a2a3
ða21x2

1 þ a22x
2
2 þ a23x

2
3Þ

3=2
C�1

kj ðxÞxixl dSðxÞ x 2 X ð16Þ

The strain field inside X is obtained from (13) as,

��ij ¼
1

2
ðu�i;j þ u�j;iÞ ¼ � 1

8p
ðMkijl þMkjilÞk�

kl x 2 X ð17Þ

Comparing definitions (3) with (17), one finds,

Pijkl ¼
1

16p
ðMkijl þMkjil þMlijk þMljikÞ Sijkl ¼ PijmnCmnkl ð18Þ

where the components Pijkl have been made symmetric under k $ l due to symmetry of the k�
kl tensor. The

definitions (12), (16), and (18) are identical. They also indicate that P is symmetric and positive definite.

3. Rate forms of the P tensor

3.1. Ellipsoidal inclusions in an anisotropic medium

If the elastic constants of the solid containing the inclusion are prescribed as functions of an evolution

parameter t, in the form oCijklðtÞ=ot, then the P and S tensors also become functions of an evolution pa-

rameter t. The objective here is to find rate forms or derivatives _PPijkl, _SSijkl of the P and S tensors in terms of

the components CijklðtÞ and their derivatives _CCijklðtÞ. The derivative of the P tensor is obtained from (18) as,

_PPijkl ¼
1

16p
ð _MMkijl þ _MMkjil þ _MMlijk þ _MMljikÞ ð19Þ

We may also find the derivative of P in terms of the derivative of the interfacial tensor P. From (12), it

follows that,

_PPijkl ¼
1

4p

Z
SðxÞ

a1a2a3
f3

_PPijklðxÞdSðxÞ ð20Þ

where f ¼ ða21x2
1 þ a22x

2
2 þ a23x

2
3Þ

1=2
.

To find _PPijkl we first note that for any tensor CðtÞ,
d

dt
C�1 ¼ �C�1 _CCC�1 ð21Þ

since ðd=dtÞðCC�1Þ ¼ 0. The derivative of Mkijl tensor then follows from (16) as,

_MMkijl ¼ �
Z
SðxÞ

a1a2a3
f3

C�1
ks

_CCstC
�1
tj xixl dSðxÞ ð22Þ

To obtain the form of (16) and (22) more suitable for numerical evaluations the following change of

variables is usually employed (Mura, 1982),

f1 ¼ a1x1=f f2 ¼ a2x2=f f3 ¼ a3x3=f
f ¼ ða21x2

1 þ a22x
2
2 þ a23x

2
3Þ

1=2

Then (16) is written as,

Mkijl ¼
Z
SðfÞ

C�1
kj ðxÞxixl dSðfÞ ð23Þ
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where dSðfÞ ¼ a1a2a3 dSðxÞ=f3. Since C�1
kj ðxÞxixl is a homogeneous polynomial of degree 0 the factor f

can be dropped in xi ¼ fif=ai and (23) can be written as,

Mkijl ¼
Z
SðfÞ

Pkijl
f1
a1

;
f2
a2

;
f3
a3

� �
dSðfÞ ð24Þ

PkijlðxÞ ¼ C�1
kj ðxÞxixl ð25Þ

The surface element dSðfÞ can be written as

dSðfÞ ¼ df3 dw ð26Þ

where

f1 ¼ ð1� f23Þ
1=2

cosw f2 ¼ ð1� f23Þ
1=2

sinw f3 ¼ f3 ð27Þ

Then (24) takes the form,

Mkijl ¼
Z 1

�1

df3

Z 2p

0

Pkijl
f1
a1

;
f2
a2

;
f3
a3

� �
dw ð28Þ

We note that C�1
ks

_CCstC
�1
tj xixl is also a homogeneous polynomial of order 0 and thus one can write the

derivative of the Mkijl tensor similarly to (28) as,

_MMkijl ¼ �
Z 1

�1

df3

Z 2p

0

� kijl
f1
a1

;
f2
a2

;
f3
a3

� �
dw ð29Þ

� kijlðxÞ ¼ C�1
ks ðxÞ _CCstðxÞC�1

tj ðxÞxixl ð30Þ

Let ĈC signify the adjoint of C, and jCj the determinant of C, i.e.,

CĈC ¼ jCjI ð31Þ

Then (28) reads,

Mkijl ¼
Z 1

�1

df3

Z 2p

0

bCCkjð�xxÞ
jCð�xxÞj �xxi �xxl dw �xx1 ¼ f1=a1 �xx2 ¼ f2=a2 �xx3 ¼ f3=a3 ð32Þ

and similarly (29) reads,

_MMkijl ¼ �
Z 1

�1

df3

Z 2p

0

bCC�1
ks ð�xxÞ _CCstð�xxÞbCC�1

tj ð�xxÞ
jCð�xxÞjjCð�xxÞj �xxi �xxl dw ð33Þ

The forms (29) and (33) are suggested to be used for numerical evaluations of _PP whenever the analytical

expressions for the P tensor itself are unavailable or difficult to obtain. For a general anisotropic material

Gavazzi and Lagoudas (1990) developed a procedure based on Gaussian quadrature formula to evaluate

the double integral (32). The same procedure can be applied for evaluation of the integral (33).
As another alternative, Mura (1982) suggests to evaluate the integral with respect to the angle w by the

use of theorem of residues after the following change of variables is performed,

cosw ¼ ðzþ z�1Þ=2 sinw ¼ ðz� z�1Þ=ð2iÞ dw ¼ dz=ðizÞ

The residues will be in general dependent upon a value of f3. However, more explicit results may be ob-
tained for transversely isotropic materials with the axis of rotational symmetry aligned with the x3-axis.

A.P. Suvorov, G.J. Dvorak / International Journal of Solids and Structures 39 (2002) 5659–5678 5663



3.2. Spheroidal inclusion in a transversely isotropic medium

Let x3 be the axis of elastic symmetry coincident with the axis of the inclusion (1). We use contracted

notation Cpq for the components of the stiffness tensor Cijkl, i.e., Ciiii ¼ Cii, Ciijj ¼ Cij, and C2323 ¼ C44,
C1313 ¼ C55, C1212 ¼ C66. In contracted notation Cpq, the only non-zero components of the stiffness matrix

Cpq are,

C11 ¼ C22 ¼ k þ m C33 ¼ n C13 ¼ C23 ¼ l
C12 ¼ k � m C44 ¼ C55 ¼ p C66 ¼ 1

2
ðC11 � C12Þ ¼ m ð34Þ

where k, m, n, l, and p are Hill�s elastic moduli.

It can be shown that for a spheroidal inclusion with a1 ¼ a2 ¼ 1 and 1=a23 ¼ c in a transversely isotropic
medium, jCj is a function of only f3 and is independent of w,

jCðf3Þj ¼ ðC44f
2
3cþ C66ð1� f23ÞÞ½cf

2
3ð1� f23ÞðC11C33 � 2C13C44 � C2

13Þ þ c2f43C44C33 þ C11C44ð1� f23Þ
2�
ð35Þ

Thus, (32) assumes the form,

Mkijl ¼
Z 1

�1

1

jCðf3Þj
df3

Z 2p

0

bCCkjð�xxÞ �xxi �xxl dw ð36Þ

We list the values of a few of the internal integrals of (36), denoted as I, below,

I3333 ¼ 2pf23cðC44f
2
3cþ C66ð1� f23ÞÞðC44f

2
3cþ C11ð1� f23ÞÞ

I1111 ¼ I2222 ¼
p
4
ð1� f23Þ½ðC11C44 þ 3C66C44Þð1� f23Þ

2 þ 4C44C33c2f
4
3

þ ðC2
13 � C11C33 þ 2C13C44 � 3C2

44 � 3C66C33Þcf23ðf
2
3 � 1Þ� ð37Þ

Analytical evaluation of the integrals over f3 of type (36) for transversely isotropic medium has been

presented in the papers of Withers (1989) and Mikata (2001).

Analogously, one can write the integral (33) as,

_MMkijl ¼ �
Z 1

�1

1

jCð�xxÞj2
df3

Z 2p

0

bCC�1
ks ð�xxÞ _CCstð�xxÞbCC�1

tj ð�xxÞ �xxi �xxl dw ð38Þ

The integral can be evaluated numerically by employing Gaussian integration rule.

4. Rate forms of P for special shapes of ellipsoidal inclusions

In this section we present the rate forms of the tensor P for long cylinders, spheres, and thin disks.

4.1. Cylindrical inclusion in an anisotropic medium

A cylindrical inclusion domain X can be obtained from (1) by letting a3 ! 1 so that X becomes,

x21=a
2
1 þ x22=a

2
2 6 1 �1 < x3 < 1 q ¼ a1=a2 ð39Þ

Kinoshita and Mura (1971) proved that for interior points x 2 X and a3 ! 1, the tensor MkijlðxÞ in (14)

tends to the constant value,

Mkijl ¼ 2

Z
sðxÞ

a1a2
a21x

2
1 þ a22x

2
2

Pkijlðx1;x2; 0ÞdsðxÞ PkijlðxÞ ¼ C�1
kj ðxÞxixl ð40Þ

where sðxÞ is the unit circle sðxÞ ¼ fxjx2
1 þ x2

2 ¼ 1g.
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The derivative of the M tensor for a cylindrical inclusion is then obtained from (21) and (40) as,

_MMkijl ¼ �2

Z
sðxÞ

a1a2
a21x

2
1 þ a22x

2
2

� kijlðx1;x2; 0ÞdsðxÞ

� kijlðx1;x2;x3Þ ¼ C�1
ks ðxÞ _CCstðxÞC�1

tj ðxÞxixl ð41Þ

To evaluate the integrals (40) and (41) we follow the procedure described by Ting and Lee (1997). Let n̂n
and m̂m be two fixed orthogonal unit vectors on the plane x3 ¼ 0; any unit vector x lying on that plane can

be represented by,

x ¼ n̂n cosw þ m̂m sinw ð42Þ

where 06w6 2p. Then,

Ckjðx1;x2; 0Þ ¼ Cksjtxsxtjx3¼0 ¼ Cksjtðn̂ns cosw þ m̂ms sinwÞðn̂nt cosw þ m̂mt sinwÞ ð43Þ

By introducing new tensors,

Qkj ¼ Cksjtn̂nsn̂nt Rkj ¼ Cksjtn̂nsm̂mt Tkj ¼ Cksjtm̂msm̂mt ð44Þ

the tensor Ckjðx1;x2; 0Þ can be written as,

CðwÞ ¼ Q cos2 w þ ðRþ RTÞ cosw sinw þ T sin2 w ¼ cos2 wCðzÞ ð45Þ

where z ¼ tanw and,

CðzÞ ¼ Q þ zðRþ RTÞ þ z2T ð46Þ

Let us now denote

KilðxÞ ¼ xixl ð47Þ

and express the tensor Kðx1;x2; 0Þ in terms of a parameter w, in a manner similar to (45),

KðwÞ ¼ F cos2 w þ ðG þ GTÞ cosw sinw þH sin2 w ¼ cos2 wKðzÞ ð48Þ

where

Fil ¼ n̂nin̂nl Gil ¼ n̂nim̂ml Hil ¼ m̂mim̂ml ð49Þ

and

KðzÞ ¼ F þ zðG þ GTÞ þ z2H ð50Þ

Also,

a21x
2
1 þ a22x

2
2 ¼ cos2 wðaþ 2bzþ cz2Þ a ¼ a21n̂n

2
1 þ a22n̂n

2
2 b ¼ ða21n̂n1m̂m1 þ a22n̂n2m̂m2Þ c ¼ a21m̂m

2
1 þ a22m̂m

2
2 ð51Þ

Using the definitions (45), (48), and (51) the integral in (41) can be written as,

_MMkijl ¼ �4

Z p=2

�p=2

a1a2
cos2 wðaþ 2bzþ cz2ÞC�1

ks ðwÞ _CCstðwÞC�1
tj ðwÞKilðwÞdw ð52Þ

or, in terms of the variable z ¼ tanw as,

_MMkijl ¼ �4

Z 1

�1

a1a2
ðaþ 2bzþ cz2ÞC�1

ks ðzÞ _CCstðzÞC�1
tj ðzÞKilðzÞdz ð53Þ

since dw ¼ dz=ð1þ z2Þ ¼ cos2 wdz. Moreover, if jCðzÞj denotes the determinant of CðzÞ and ĈCðzÞ the adjoint
of CðzÞ,
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CðzÞĈCðzÞ ¼ jCðzÞjI ð54Þ
then (53) assumes the form,

_MMkijl ¼ �4

Z 1

�1

a1a2bCCksðzÞ _CCstðzÞbCC tjðzÞ
ðaþ 2bzþ cz2ÞjCðzÞj2

KilðzÞdz ð55Þ

Suppose the unit vectors in (42) are n̂n ¼ f 1 0 0 gT, m̂m ¼ f 0 1 0 gT. Then a ¼ a21, b ¼ 0, and c ¼ a22.
Then the denominator of (55) is equal to zero if z ¼ �ða1=a2Þi or if the determinant of CðzÞ vanishes, i.e.,

jCðzÞj ¼ 0 ð56Þ
Eq. (56) is of the sixth order in z. Let zm ðm ¼ 1; 2; 3Þ denote the roots of (56) with a positive imaginary part.

Now, in view of (46), the determinant of CðzÞ may be expressed by,

jCðzÞj ¼ jT jf ðzÞ ð57Þ
where

f ðzÞ ¼ ðz� z1Þðz� �zz1Þðz� z2Þðz� �zz2Þðz� z3Þðz� �zz3Þ; ð58Þ
the overbar signifies complex conjugate and jT j is the determinant of matrix T. From the theorem of
residues we then obtain,

_MMkijl ¼ � 8pi

jT j2
bCCksðqiÞ _CCstðqiÞbCCtjðqiÞ

2if 2ðqiÞ KilðqiÞ þ
X3

m¼1

d

dz

bCCksðzÞ _CCstðzÞbCC tjðzÞKilðzÞ
ðq þ z2=qÞf 2ðzÞ ðz� zmÞ2

" #					
z¼zm

( )
q ¼ a1=a2 ð59Þ

It should be pointed out that (59) remains valid when zm are all different and zm 6¼ qi. For other cases, an
alternative expression may be obtained depending on the number and multiplicity of the poles of the in-

tegrand (55).

It is instructive here to obtain expressions for the components of the P tensor itself. From (40) we have,

Mkijl ¼ 4

Z 1

�1

a1a2bCCkjðzÞ
ðaþ 2bzþ cz2ÞjCðzÞjKilðzÞdz ð60Þ

and, again, by the use of the theorem of residues, we obtain,

Mkijl ¼
8pi
jT j

bCCkjðqiÞKilðqiÞ
2if ðqiÞ

(
þ
X3

m¼1

bCCkjðzmÞKilðzmÞ
ðq þ z2m=qÞf 0ðzmÞ

)
q ¼ a1=a2 ð61Þ

4.2. Cylindrical inclusion in an orthotropic material

For an orthotropic material, and the unit vectors in (42) equal to n̂n ¼ f 1 0 0 gT, m̂m ¼ f 0 1 0 gT,
the matrix CðzÞ becomes,

CðzÞ ¼
C11 þ z2C66 zðC12 þ C66Þ 0
zðC12 þ C66Þ C66 þ z2C22 0

0 0 C55 þ z2C44

0@ 1A ð62Þ

and the matrix KðzÞ is,

KðzÞ ¼
1 z 0
z z2 0

0 0 0

0@ 1A ð63Þ
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Contracted notation Cpq, ðp; q ¼ 1; 2; . . . ; 6Þ for the elastic constants Cijkl has been used in (62). One of the

roots zm of (56) is immediately found as z3 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C55=C44

p
. Other two zm with a positive imaginary part are

chosen among four roots of (56) given by �ke�ia (Yang and Chou, 1976), where

z1;2 ¼ �ke�ia Imðz1;2Þ > 0

k ¼ ðC11=C22Þ1=4 a ¼ arccosð
ffiffiffiffiffiffiffiffi
�C

p
=2Þ for� 4 < C6 0

a ¼ arccosði
ffiffiffiffi
C

p
=2Þ for C > 0

C ¼ C11C22 � C2
12 � 2C12C66

C66

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22

p � 2 � 4 < C < 1

ð64Þ

The only non-zero components of the adjoint of CðzÞ are found as,bCC11 ¼ ðC66 þ z2C22ÞðC55 þ z2C44ÞbCC22 ¼ ðC11 þ z2C66ÞðC55 þ z2C44ÞbCC12 ¼ bCC21 ¼ �zðC12 þ C66ÞðC55 þ z2C44ÞbCC33 ¼ ðC11 þ z2C66ÞðC66 þ z2C22Þ � z2ðC12 þ C66Þ2

ð65Þ

The tensor _PP is now evaluated by using (62)–(65) in (59) and (19); the tensor P itself is evaluated from
(61) and (18). Below we give expressions for the components of the P tensor, as it follows from (61), for an

elliptic cylinder in an orthotropic solid,

P11 ¼ P1111 ¼
2i

jT j
ðC66 � q2C22ÞðC55 � q2C44Þ

2if ðqiÞ

(
þ
X3

m¼1

ðC66 þ z2mC22ÞðC55 þ z2mC44Þ
ðq þ z2m=qÞtmðzmÞ

)

P12 ¼ P1122 ¼
2iðC12 þ C66Þ

jT j
q2ðC55 � q2C44Þ

2if ðqiÞ

(
�
X3

m¼1

z2mðC55 þ z2mC44Þ
ðq þ z2m=qÞtmðzmÞ

)

P22 ¼ P2222 ¼
2i

jT j
�q2ðC11 � q2C66ÞðC55 � q2C44Þ

2if ðqiÞ

(
þ
X3

m¼1

z2mðC11 þ z2mC66ÞðC55 þ z2mC44Þ
ðq þ z2m=qÞtmðzmÞ

)

P66 ¼ 4P1212 ¼
2i

jT j
ðC11 þ q4C22 þ 2q2C12ÞðC55 � q2C44Þ

2if ðqiÞ

(
þ
X3

m¼1

ðC11 þ z4mC22 � 2z2mC12ÞðC55 þ z2mC44Þ
ðq þ z2m=qÞtmðzmÞ

)

P55 ¼ 4P1313 ¼
2i

jT j
ðC11 � q2C66ÞðC66 � q2C22Þ þ q2ðC12 þ C66Þ2

2if ðqiÞ

(

þ
X3

m¼1

ðC11 þ z2mC66ÞðC66 þ z2mC22Þ � z2mðC12 þ C66Þ2

ðq þ z2m=qÞtmðzmÞ

)

P44 ¼ 4P2323 ¼
2i

jT j
�q2½ðC11 � q2C66ÞðC66 � q2C22Þ þ q2ðC12 þ C66Þ2�

2if ðqiÞ

(

þ
X3

m¼1

z2m ½ðC11 þ z2mC66ÞðC66 þ z2mC22Þ � z2mðC12 þ C66Þ2�
ðq þ z2m=qÞtmðzmÞ

)
zm 6¼ i; qi

ð66Þ

where

t1ðz1Þ ¼ f 0ðz1Þ ¼ ðz1 � �zz1Þðz1 � z2Þðz1 � �zz2Þðz1 � z3Þðz1 � �zz3Þ ð67Þ

and all other tmðzmÞ are obtained from (67) by a cyclic permutation of the subscripts.
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It is possible to simplify further (66) and give an expression that is valid also for degenerate case of

transversely isotropic materials when all zm ¼ i. To accomplish this we follow the procedure described in

detail by Ting and Lee (1997).

It can be shown that for an orthotropic material the determinant (57) is a cubic function in z2 and,

f ðzÞ ¼ ðz2 � z21Þðz2 � z22Þðz2 � z23Þ ð68Þ

We also note that it is convenient to consider qi formally as a fourth root (with positive imaginary part) of

the polynomial f ðzÞðq2 þ z2Þ=q. Thus, summation in (66) over index m can be carried out from m ¼ 1 to 4.
Roots of the Eq. (68) permit to use the notation,

z1 þ z2 ¼ ig z1z2 ¼ �h z21 þ z22 ¼ �s z3 ¼ ib3 z4 ¼ iq ð69Þ
where

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22 � C2

12 þ 2C66ððC11C22Þ1=2 � C12Þ
C22C66

s
> 0

b3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C55=C44

p
h ¼

ffiffiffiffiffiffiffi
C11

C22

r
s ¼ g2 � 2h q ¼ a1=a2

ð70Þ

As it has been shown by Ting and Lee (1997), to simplify (66) one needs to collect the terms before znm ,
n ¼ 0; 2; 4; 6 and then for each exponent n sum these terms from m ¼ 1 to 4. To represent the resulting

quantities we introduce the following parameters,

n0 ¼ 2ðhb3 þ hq þ b3qgÞ þ q2ðg þ b3Þ þ b2
3ðg þ qÞ þ sðb3 þ qÞ þ hg

n2 ¼ ðg þ b3 þ qÞ
n4 ¼ ðhb3 þ hq þ b3qgÞ
n6 ¼ 2qhb3ðq þ g þ b3Þ þ q2ðb3sþ b2

3g þ hgÞ þ b2
3ðqsþ hgÞ þ h2ðb3 þ qÞ

ð71Þ

and

ðz1 þ z2Þðz2 þ z3Þðz3 þ z1Þðz1 þ z4Þðz2 þ z4Þðz3 þ z4Þ ¼ �d1

d1 ¼ gðhþ b3g þ b2
3Þðq2 þ qg þ hÞðb3 þ qÞ > 0

d2 ¼ z1z2z3z4 ¼ hb3q > 0

ð72Þ

It is important that d1 and d2 are strictly positive. Then, the components of the P tensor take the form,

P11 ¼
q

d1C22C44C66

C55C66

n0
d2

�
þ ðC22C55 þ C44C66Þn2 þ C22C44n4

�
P12 ¼

q
d1C22C44C66

ð�C55ðC12 þ C66Þn2 � C44ðC12 þ C66Þn4Þ

P22 ¼
q

d1C22C44C66

ðC11C55n2 þ ðC55C66 þ C11C44Þn4 þ C44C66n6Þ

P66 ¼
q

d1C22C44C66

C11C55

n0
d2

�
þ ðC11C44 � 2C12C55Þn2 þ ðC22C55 � 2C12C44Þn4 þ C22C44n6

�
P55 ¼

q
d1C22C44C66

C11C66

n0
d2

�
þ ðC11C22 þ C2

66 � ðC12 þ C66Þ2Þn2 þ C22C66n4

�
P44 ¼

q
d1C22C44C66

ðC11C66n2 þ ðC11C22 þ C2
66 � ðC12 þ C66Þ2Þn4 þ C22C66n6Þ

ð73Þ
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Expressions (73) are valid for an elliptic cylinder in any orthotropic material including the degenerate case

of transversely isotropic material when g ¼ 2, h ¼ 1, b3 ¼ 1. It is worth noting that in order to use (73) one

needs to know only the sum and the product of the roots z1, z2 but not their individual values. It is also seen

that the Pij are real (not complex) numbers.
Consider now the case of a slit crack that occupies the region,

�a1 6 x1 6 a1 x2 ¼ 0 �16 x3 61 ð74Þ
The P tensor may be obtained from (73) by letting q ¼ a1=a2 ! 1. In this case qn0=ðd1d2Þ ! 0,

qn2=d1 ! 0, qn4=d1 ! 0, and qn6=d1 ! 1. Thus, we obtain,

P22 ¼
1

C22

P44 ¼
1

C44

P66 ¼
1

C66

ð75Þ

and other Pij are equal to zero.

Due to cumbersome nature of (73) the derivative of the P tensor with respect to parameter t is at best

evaluated numerically as,

_PPij ¼ ðPijðt þ DtÞ � PijðtÞÞ=Dt ð76Þ

where Dt is the sufficiently small increment of t. In Appendix A we illustrate how one can evaluate _PPij based
on the general formula (59) for the general case of anisotropic media.

4.3. Cylindrical inclusion in a transversely isotropic material

We now apply results obtained in Section 4.1 to transversely isotropic materials. Let x3 be the axis of

elastic symmetry coincident with the axis of the cylindrical inclusion. By using relations (34), it may be

easily shown that for a transversely isotropic material the zm, m ¼ 1; 2; 3 are all equal to i. Thus,

jCðzÞj ¼ jT jðz� iÞ3ðzþ iÞ3 ¼ C22C44C66ðz� iÞ3ðzþ iÞ3 ð77Þ
For a long circular cylinder in a transversely isotropic material analytical expressions for the P tensor

has been derived by Walpole (1969). Therefore, it is much simpler to differentiate them with respect to

parameter t directly rather than employ (55). (Formula (61) cannot be used since zm ¼ i.) Instead, we derive

here coefficients of the _PP tensor for a cylinder of ellipsoidal cross-section, and outline in Appendix A an

analogous derivation for more general anisotropic solids. As an example, we evaluate _MM1111 from (55).

With the use of (77) we have,

_MM1111 ¼ �4

Z 1

�1

bCC1sðzÞ _CCstðzÞbCCt1ðzÞ
ðq þ z2=qÞjT j2ðz� iÞ6ðzþ iÞ6

K11ðzÞdz ð78Þ

By expanding (78) in accordance with (62)–(65), we obtain,

_MM1111 ¼ �4

Z 1

�1

bCC11ðzÞbCC11ðzÞ _CC11ðzÞ þ bCC12ðzÞbCC12ðzÞ _CC22ðzÞ þ 2bCC11ðzÞbCC12ðzÞ _CC12ðzÞ
ðq þ z2=qÞjT j2ðz� iÞ6ðzþ iÞ6

dz

¼ �4

Z 1

�1

ðC66 þ z2C22Þ2ð _CC11 þ z2 _CC66Þ þ z2ðC12 þ C66Þ2ð _CC66 þ z2 _CC22Þ
ðq þ z2=qÞC2

22C
2
66ðz� iÞ4ðzþ iÞ4

� 2z2ðC66 þ z2C22ÞðC12 þ C66Þð _CC12 þ _CC66Þ
ðq þ z2=qÞC2

22C
2
66ðz� iÞ4ðzþ iÞ4

dz ð79Þ

since for a transversely isotropic material C55 þ z2C44 ¼ C44ð1þ z2Þ. Evidently, z ¼ i is the pole of the
integrand in (79) of multiplicity 4, and z ¼ qi is the pole of the multiplicity 1.

A.P. Suvorov, G.J. Dvorak / International Journal of Solids and Structures 39 (2002) 5659–5678 5669



The theorem of residues furnishes the value of _MM1111 as,

_MM1111 ¼ � 4pi
3

d3

dz3
f. . . ðz� iÞ4gjz¼i � 8pif. . . ðz� qiÞgjz¼qi ð80Þ

where . . . represents the fractional expression under the sign of the integral in (79). After lengthy algebraic

manipulations, (79) reduces to,

_MM1111 ¼ �2p
C2

66
_CC22ðq þ 2Þ þ C2

22
_CC66q

C2
22C

2
66ð1þ qÞ2

ð81Þ

Then, from (19) and with the use of contracted notation Pst for components Pijkl we have,

_PP11 ¼ _PP1111 ¼ � 1

2

C2
66
_CC22ðq þ 2Þ þ C2

22
_CC66q

C2
22C

2
66ð1þ qÞ2

q ¼ a1=a2 ð82Þ

Other non-zero components _PPst can be found in a similar manner,

_PP22 ¼ _PP2222 ¼ � q
2

ðC2
66
_CC22ð1þ 2qÞ þ C2

22
_CC66Þ

C2
22C

2
66ð1þ qÞ2

_PP12 ¼ _PP1122 ¼ � q
2

ðC2
66
_CC22 � C2

22
_CC66Þ

C2
22C

2
66ð1þ qÞ2

_PP66 ¼ 4 _PP1212 ¼ � 2C2
66
_CC22q þ C2

22
_CC66ð1þ q2Þ

C2
22C

2
66ð1þ qÞ2

_PP44 ¼ 4 _PP2323 ¼ � q _CC44

C2
44ð1þ qÞ

_PP55 ¼ 4 _PP1313 ¼ �
_CC44

C2
44ð1þ qÞ

ð83Þ

For completeness, we give expressions for the non-zero components of P tensor,

P11 ¼ P1111 ¼
1

2

qðC22 þ C66Þ þ 2C66

C22C66ð1þ qÞ2
q ¼ a1=a2

P22 ¼ P2222 ¼
q
2

ðC22 þ C66ð1þ 2qÞÞ
C22C66ð1þ qÞ2

P12 ¼ P1122 ¼
q
2

C66 � C22

C22C66ð1þ qÞ2

P66 ¼ 4P1212 ¼
C22ð1þ q2Þ þ 2qC66

C22C66ð1þ qÞ2

P44 ¼ 4P2323 ¼
1

C44

q
1þ q

P55 ¼ 4P1313 ¼
1

C44

1

1þ q

ð84Þ

4.4. Spherical inclusion in an isotropic medium

Consider now the case of spherical inclusions, i.e., a1 ¼ a2 ¼ a3 in (1). The tensorMkijl for points x inside

the spherical inclusion follows from (16),
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Mkijl ¼
Z
SðxÞ

C�1
kj ðxÞxixl dSðxÞ ð85Þ

The elastic constants Cijkl for an isotropic material are,

Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ ð86Þ
where k and l are the Lame constants. For the points on the unit sphere S2, the tensor Cðx1;x2;x3Þ,
defined by (7), becomes,

C ¼
ðk þ lÞx2

1 þ l ðk þ lÞx1x2 ðk þ lÞx1x3

ðk þ lÞx1x2 ðk þ lÞx2
2 þ l ðk þ lÞx2x3

ðk þ lÞx1x3 ðk þ lÞx2x3 ðk þ lÞx2
3 þ l

0@ 1A ð87Þ

Its inverse, again for the points on the unit sphere S2, may be expressed in the form,

C�1 ¼
�x2

1c þ 1=l �x1x2c �x1x3c
�x1x2c �x2

2c þ 1=l �x2x3c
�x1x3c �x2x3c �x2

3c þ 1=l

0@ 1A ð88Þ

where

c ¼ k þ l
lðk þ 2lÞ

Since the expression (88) of the inverse of C for isotropic materials is quite simple, the derivative of the P
tensor with respect to the parameter t can be determined more easily by direct differentiation of the inte-

grand in (85) rather than by employing (21). With the use of spherical coordinates, we have from (85),

_MMkijl ¼ 2

Z p

0

sin h
Z p=2

�p=2

d

dt
C�1

kj ðx1;x2;x3Þxixl dwdh ð89Þ

where x1 ¼ sin h cosw, x2 ¼ sin h sinw, x3 ¼ cos h. The components of the _PP tensor for a spherical in-

clusion in an isotropic medium are now found from (19) and (89) as,

_PP11 ¼ � l2ð3 _kk þ 14 _llÞ þ 2 _llðk2 þ 4lkÞ
15l2ðk þ 2lÞ2

_PP12 ¼
l2ð2 _ll � _kkÞ þ _llðk2 þ 4lkÞ

15l2ðk þ 2lÞ2

_PP44 ¼ � 4l2ð _kk þ 8 _llÞ þ 6 _llðk2 þ 4lkÞ
15l2ðk þ 2lÞ2

_PP11 ¼ _PP22 ¼ _PP33; _PP44 ¼ _PP55 ¼ _PP66; _PP12 ¼ _PP13 ¼ _PP23

ð90Þ

The components of P tensor are,

P11 ¼
7l þ 2k

15lðk þ 2lÞ

P12 ¼
k þ l

�15lðk þ 2lÞ

P44 ¼
2ð3k þ 8lÞ
15lðk þ 2lÞ

P11 ¼ P22 ¼ P33; P44 ¼ P55 ¼ P66; P12 ¼ P13 ¼ P23

ð91Þ
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4.5. Disk in an orthotropic medium

For a thin disk,

x21=a
2
1 þ x22=a

2
2 6 1 x3 ¼ 0 ð92Þ

This may be regarded as a limiting case of the ellipsoid (1), by letting a3 ! 0.
It has been shown by Kinoshita and Mura (1971) that as a3 ! 0 the tensor (16) tends to,

Mkijl ¼ 4pC�1
kj ðe3Þd3id3l ð93Þ

where e3 ¼ ð0 0 1ÞT and Ckj is defined in (7). Expression (93) remains valid for arbitrary degree of an-

isotropy of C and for arbitrary a1=a2.
Consider a thin disk (92) in an orthotropic medium with x3 being one of the axes of elastic symmetry.

One can find easily that C�1
kj ðe3Þ, required in (93), is given by,

C�1ðe3Þ ¼
1=C1313 0 0

0 1=C2323 0

0 0 1=C3333

0@ 1A ð94Þ

By differentiating (93) we have,

_MMkijl ¼ 4p
d

dt
C�1

kj ðe3Þd3id3l ð95Þ

Now, with the use of contracted notation, the only non-zero components of the _PP tensor are found as,

_PP33 ¼ �
_CC33

C2
33

_PP44 ¼ �
_CC44

C2
44

_PP55 ¼ �
_CC55

C2
55

ð96Þ

The non-zero components of the P tensor are,

P33 ¼
1

C33

P44 ¼
1

C44

P55 ¼
1

C55

ð97Þ

5. Applications

5.1. The inhomogeneity problem

Consider now an inhomogeneity of stiffness C r, located in the ellipsoidal domain X, defined in Eq. (1),

that is contained in a large volume V0 of a comparison medium of stiffness C . This volume is subjected to a

certain uniform image strain �I, applied at the remote boundaries of V0 (problem (b)). Consider also a

related problem (a), for a transformed homogeneous inclusion in the domain X, loaded by a uniform ei-

genstrain la, and embedded in the volume V0 of stiffness C . As in problem (b), a uniform image strain �I is
applied at the boundary V0.

Comparing the local strains and stresses in X we have,

�ar ¼ Sla þ �I ¼ �br ¼ Ar�
I ð98Þ

ra
r ¼ Cð�ar � laÞ ¼ rb

r ¼ C rAr�
I ð99Þ

where Ar is yet unknown partial mechanical strain concentration factor. The first relation yields the

equivalent eigenstrain as,
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la
r ¼ S�1ðAr � IÞ�I ð100Þ

which, when substituted into the Eq. (99), provides the strain concentration factor value as,

A�1
r ¼ ðI � PðC � C rÞÞ ¼ PrP

�1 ð101Þ

where P ¼ SC�1 ¼ ðC� þ CÞ�1
and Pr ¼ ðP�1 � C þ C rÞ�1 ¼ ðC� þ C rÞ�1

and C� is the constraint tensor

that represents the stiffness of a uniformly deformed ellipsoidal cavity containing an inhomogeneity C r.

Substituting (101) into (100) we have,

la
r ¼ C�1P�1ðPr � PÞP�1�I ð102Þ

Rate forms of (98) and (99) are,

_��ar ¼ _SSla þ S _lla þ _��I ¼ _��br ¼ _AAr�
I þ Ar _��

I ð103Þ

_rra
r ¼ _CCð�ar � laÞ þ Cð _��ar � _llaÞ ¼ _rrb

r ¼ ð _CC rAr þ C r
_AArÞ�I þ C rAr _��

I ð104Þ

Since the eigenstrain (100) and the concentration factor (101) satisfy the Eqs. (98) and (99), their derivatives
_lla
r and _AAr can be shown to satisfy the rate form of these equations, i.e., (103) and (104).

In summary, the rates of the strain and stress fields in the inhomogeneity C r residing in comparison

medium C that is loaded remotely by �I are,

_��r ¼ _AAr�
I þ Ar _��

I ð105Þ

_rrr ¼ ð _CC rAr þ C r
_AArÞ�I þ C rAr _��

I ð106Þ

The derivative of the Ar is found from (101) as,

_AAr ¼ Ar½ _PPðC � C rÞ þ Pð _CC � _CC rÞ�Ar ð107Þ

5.2. Estimates of overall stresses and stress rates

The overall stiffness of a composite aggregate consisting of phases r ¼ 1; 2; . . . ; n can be found using the
standard form (Hill, 1965; Walpole, 1966) L ¼

Pn
r¼1 crC rAr, where Ar is the total concentration factor

Ar ¼ Arð
Pn

s¼1 AsÞ�1
, and cr is the volume fraction of the phase r. The overall stress and stress rate sup-

ported by a composite with evolving moduli, under applied strain �0 and strain rate _��0 are,

r ¼
Xn

r¼1

crC rAr�
0

_rr ¼
Xn

r¼1

crð _CC rAr þ C r
_AArÞ�0 þ crC rAr _��

0

ð108Þ

The stiffness C of the comparison medium is chosen according to the selected averaging method. For

example, C ¼ C1 provides the Mori-Tanaka estimate for a composite with matrix C1. The choice C ¼ L
implies the self-consistent estimate which would be rather difficult to implement in the present context.
Other admissible choices of C in terms of known phase properties can be found in Dvorak and Srinivas

(1999).
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6. Conclusions

The results present derivations of solutions of transformed homogeneous inclusion problems in aniso-

tropic solids that have variable elastic moduli CðtÞ, dependent on an evolution parameter t, and changing at
a prescribed rate oCðtÞ=ot. The results are found in terms of rates oPðtÞ=ot of the P tensors for several

useful shapes of ellipsoidal inclusions in anisotropic solids with symmetries of typical composite material

systems, and are derived in explicit or closed form. The well-known connections with the Eshelby tensor

SðtÞ ¼ PðtÞCðtÞ then provides the rate forms oSðtÞ=ot ¼ ðoPðtÞ=otÞCðtÞ þ PðtÞðoCðtÞ=otÞ, which are utilized

in solving inhomogeneity problems in heterogeneous solids with varying constituent stiffness coefficients.

Extension of these results to evaluation of overall moduli rates by standard averaging methods is also

outlined.
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Appendix A

Here we elucidate how one can evaluate the tensors (59) and (61) for a cylinder in an arbitrary aniso-

tropic medium. In this case components of the matrix CðzÞ with the choice of the unit vectors

n̂n ¼ f 1 0 0 gT, m̂m ¼ f 0 1 0 gT are given by,

C11 ¼ C11 þ 2zC16 þ z2C66 C12 ¼ C16 þ zðC12 þ C66Þ þ z2C26

C13 ¼ C15 þ zðC14 þ C56Þ þ z2C46 C22 ¼ C66 þ 2zC26 þ z2C22

C23 ¼ C56 þ zðC46 þ C25Þ þ z2C24 C33 ¼ C55 þ 2zC45 þ z2C44

ðA:1Þ

The derivative of the matrix C with respect to parameter t (and the matrix itself) is a polynomial in z of the

second degree and thus can be represented as,

_CCðzÞ ¼
X2

l¼0

zl _CCl ðA:2Þ

where _CCl are the real symmetric matrices dependent only on the derivatives _CCijkl but not on z. Similarly, the

adjoint matrix ĈCðzÞ can be represented as a polynomial in z of degree four,

ĈCðzÞ ¼
X4

n¼0

znĈCn ðA:3Þ

where ĈCn are the real symmetric matrices independent of z. We list some of the components of the matrices

ĈCn below,bCC0
11 ¼ C66C55 � C2

56
bCC0

12 ¼ �C16C55 þ C15C56bCC0
13 ¼ C16C56 � C15C66

bCC0
22 ¼ C11C55 � C2

15bCC0
23 ¼ C15C16 � C11C56

bCC0
33 ¼ C11C66 � C2

16

ðA:4Þ
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bCC1
11 ¼ 2C66C45 þ 2C26C55 � 2C56ðC46 þ C25ÞbCC1
12 ¼ �C55ðC66 þ C12Þ þ C56ðC56 þ C14Þ þ C15ðC46 þ C25Þ � 2C16C45

ðA:5Þ

bCC2
11 ¼ C66C44 þ 4C26C45 þ C22C55 � 2C56C24 � C2

46 � 2C46C25 � C2
25bCC2

12 ¼ C56ð2C46 þ C25Þ þ C14ðC46 þ C25Þ � 2C45ðC12 þ C66Þ � C26C55 þ C15C24 � C16C44

ðA:6Þ

bCC3
11 ¼ 2C26C44 þ 2C22C45 � 2C46C24 � 2C25C24bCC3
12 ¼ C46ðC46 þ C25Þ � 2C26C45 � C44ðC66 þ C12Þ þ C56C24 þ C14C24

ðA:7Þ

bCC4
11 ¼ C22C44 � C2

24
bCC4

12 ¼ C46C24 � C26C44bCC4
13 ¼ C26C24 � C46C22

bCC4
22 ¼ C66C44 � C2

46bCC4
23 ¼ C26C46 � C66C24

bCC4
33 ¼ C66C22 � C2

26

ðA:8Þ

Using definitions (A.2) and (A.3) in (59) we arrive at the following formula, suitable for numerical

determination of _MM ,

_MMkajb ¼ � 8pi

jT j2
X3

s¼1

X3

t¼1

X2

l¼0

X4

m¼0

X4

n¼0

X3

m¼1

bCCn
ks
bCCm

tj
_CCl
stdz

d�1
m q

��(
þ z2m

q

�
t2mðzmÞ

� bCCn
ks
bCCm

tj
_CCl
stz

d
m 2

zm
q
t2mðzmÞ

�
þ 2 q

�
þ z2m

q

�
tmðzmÞt0mðzmÞ

��
q

�",
þ z2m

q

�2

t4mðzmÞ
#)

þ fbCCn
ks
bCCm

tj
_CCl
stðqiÞ

d
=½2if 2ðqiÞ�g;

a;b ¼ 1; 2; k; j ¼ 1; 2; 3; d ¼ nþ mþ lþ a þ b � 2; q ¼ a1=a2; zm 6¼ i; qi;

_MMkajb ¼ 0 if a ¼ 3 or b ¼ 3 ðA:9Þ

where

f ðzÞ ¼ ðz� z1Þðz� �zz1Þðz� z2Þðz� �zz2Þðz� z3Þðz� �zz3Þ
t1ðzÞ ¼ ðz� �zz1Þðz� z2Þðz� �zz2Þðz� z3Þðz� �zz3Þ

t01ðzÞ ¼ t1ðzÞ
1

z� �zz1

�
þ 1

z� z2
þ 1

z� �zz2
þ 1

z� z3
þ 1

z� �zz3

� ðA:10Þ

and all other tm are obtained from (A.10) by a cyclic permutation of the subscripts, and the determinant of

the matrix T is given by,

jT j ¼ C22C44C66 � C66C2
24 � C2

26C44 þ 2C26C46C24 � C2
46C22 ðA:11Þ

The Stroh eigenvalues zm are found numerically by solving (56). The tensor _PP is found from (19). Note that

the expressions (A.9) become singular when the elastic symmetry of the medium tends to transversely

isotropic. Loss of accuracy may occur because of the division by very small quantities such as tmðzmÞ for any
q and f ðqiÞ for q ¼ 1. In this case the expressions (82) and (83) must be used.
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For completeness, we give expressions for the components of the M tensor, as it follows from (61),

Mkajb ¼ 8pi
jT j

X4

n¼0

X3

m¼1

bCCn
kjz

d
m q

���(
þ z2m

q

�
tmðzmÞ

��
þ fbCCn

kjðqiÞ
d
=½2if ðqiÞ�g

a; b ¼ 1; 2; k; j ¼ 1; 2; 3

d ¼ nþ a þ b � 2; q ¼ a1=a2; zm 6¼ i; qi

Mkajb ¼ 0 if a ¼ 3 or b ¼ 3

ðA:12Þ

The P tensor is found from (18).

Appendix B

Components of the Eshelby tensor S, defined by (3), and their derivatives for certain inclusion shapes are

listed below. Derivatives of the Eshelby tensor are found from the connection S ¼ PC , i.e.,

_SSijkl ¼ _PPijmnCmnkl þ Pijmn _CCmnkl ðB:1Þ

Elliptic cylinders (39) in a transversely isotropic medium (x3 is the axis of rotational symmetry):

S1111 ¼
C22ð1þ 2qÞ � qC66

C22ð1þ qÞ2
S2222 ¼

qðC22ð2þ qÞ � C66Þ
C22ð1þ qÞ2

q ¼ a1=a2

S1122 ¼
C22 � C66ð2þ qÞ

C22ð1þ qÞ2
S2211 ¼

qðqC22 � C66ð1þ 2qÞÞ
C22ð1þ qÞ2

S1133 ¼
C13

ð1þ qÞC22

S2233 ¼
qC13

ð1þ qÞC22

S3333 ¼ 0 S3311 ¼ 0 S3322 ¼ 0

S1212 ¼
1

2

C22ð1þ q2Þ þ 2C66q

C22ð1þ qÞ2

S1313 ¼
1

2ð1þ qÞ S2323 ¼
q

2ð1þ qÞ

ðB:2Þ

_SS1111 ¼ _SS2222 ¼
qðC66

_CC22 � _CC66C22Þ
C2

22ð1þ qÞ2

_SS1122 ¼
ð2þ qÞðC66

_CC22 � _CC66C22Þ
C2

22ð1þ qÞ2
_SS2211 ¼

qð1þ 2qÞðC66
_CC22 � _CC66C22Þ

C2
22ð1þ qÞ2

_SS1133 ¼
C22

_CC13 � C13
_CC22

C2
22ð1þ qÞ

_SS2233 ¼
qðC22

_CC13 � C13
_CC22Þ

C2
22ð1þ qÞ

_SS1212 ¼
qð _CC66C22 � C66

_CC22Þ
C2

22ð1þ qÞ2

ðB:3Þ
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Spherical inclusions in an isotropic medium with Lame constants k and l:

S1111 ¼ S2222 ¼ S3333 ¼
14l þ 9k
15ðk þ 2lÞ

_SS1111 ¼
4

15

l _kk � k _ll

ðk þ 2lÞ2

S1122 ¼ S1133 ¼ S2233 ¼
3k � 2l

15ðk þ 2lÞ
_SS1122 ¼

8

15

l _kk � k _ll

ðk þ 2lÞ2

S1122 ¼ S2211 ¼ S3311 ¼ S3322

S1212 ¼ S2323 ¼ S1313 ¼
3k þ 8l

15ðk þ 2lÞ
_SS1212 ¼

2

15

k _ll � l _kk

ðk þ 2lÞ2

ðB:4Þ

Disks (92) in an orthotropic medium:

S1111 ¼ S2222 ¼ S1133 ¼ S2233 ¼ S1122 ¼ S2211 ¼ S1212 ¼ 0

S3311 ¼
C13

C33

_SS3311 ¼
C33

_CC13 � C13
_CC33

C2
33

S3322 ¼
C23

C33

_SS3322 ¼
C33

_CC23 � C23
_CC33

C2
33

S3333 ¼ 1 S2323 ¼ S1313 ¼ 1
2

_SS3333 ¼ _SS2323 ¼ 0

ðB:5Þ
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